Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0372919960170010121
Journal of Biomedical Engineering Research
1996 Volume.17 No. 1 p.121 ~ p.128
ECG Data Compression Using Adaptive Fractal Interpolation


Abstract
This paper presents the ECG data compression method referred the adaptive fractal interpolation algorithm. In the previous piecewise fractal interpolation(PFI) algorithm, the size of range is fixed So, the reconstruction error of the PFI algorithm is nonuniformly distributed in the part of the original ECG signal. In order to improve this problem, the adaptive fractal interpolation(AEI) algorithm uses the variable range. If the predetermined tolerance was not satisfied, the range would be subdivided into two equal size blocks. large ranges are used for encoding the smooth waveform to yield high compression efficiency, and the smaller ranges are U for encoding rapidly varying parts of the signal to preserve the signal quality. The suggested algorithm was evaluated using MIT/BIH arrhythmia database. The AEI algorithm was found to yield a relatively low reconstruction error for a given compression ratio than the PFI algorithm. In applications where a PRD of about 7.13% was acceptable, the ASI algorithm yielded compression ratio as high as 10.51, without any entropy coding of the parameters of the fractal code.
KEYWORD
FullTexts / Linksout information
Listed journal information